Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630846

RESUMO

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


Assuntos
COVID-19 , Humanos , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , SARS-CoV-2 , Estudos Prospectivos , Multiômica , Quimiocinas
3.
Nat Sci (Weinh) ; 4(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38505006

RESUMO

As amniote vertebrates, lizards are the most closely related organisms to humans capable of appendage regeneration. Lizards can autotomize, or release their tails as a means of predator evasion, and subsequently regenerate a functional replacement. Green anoles (Anolis carolinensis) can regenerate their tails through a process that involves differential expression of hundreds of genes, which has previously been analyzed by transcriptomic and microRNA analysis. To investigate protein expression in regenerating tissue, we performed whole proteomic analysis of regenerating tail tip and base. This is the first proteomic data set available for any anole lizard. We identified a total of 2,646 proteins - 976 proteins only in the regenerating tail base, 796 only in the tail tip, and 874 in both tip and base. For over 90% of these proteins in these tissues, we were able to assign a clear orthology to gene models in either the Ensembl or NCBI databases. For 13 proteins in the tail base, 9 proteins in the tail tip, and 10 proteins in both regions, the gene model in Ensembl and NCBI matched an uncharacterized protein, confirming that these predictions are present in the proteome. Ontology and pathways analysis of proteins expressed in the regenerating tail base identified categories including actin filament-based process, ncRNA metabolism, regulation of phosphatase activity, small GTPase mediated signal transduction, and cellular component organization or biogenesis. Analysis of proteins expressed in the tail tip identified categories including regulation of organelle organization, regulation of protein localization, ubiquitin-dependent protein catabolism, small GTPase mediated signal transduction, morphogenesis of epithelium, and regulation of biological quality. These proteomic findings confirm pathways and gene families activated in tail regeneration in the green anole as well as identify uncharacterized proteins whose role in regrowth remains to be revealed. This study demonstrates the insights that are possible from the integration of proteomic and transcriptomic data in tail regrowth in the green anole, with potentially broader application to studies in other regenerative models.

4.
Nat Commun ; 15(1): 1493, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374043

RESUMO

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined. To identify the inflammatory cells that contribute to colitis and are affected by VDZ, we perform single-cell transcriptomic and proteomic analyses of peripheral blood and colonic biopsies in healthy controls and patients with UC on VDZ or other therapies. Here we show that VDZ treatment is associated with alterations in circulating and tissue mononuclear phagocyte (MNP) subsets, along with modest shifts in lymphocytes. Spatial multi-omics of formalin-fixed biopsies demonstrates trends towards increased abundance and proximity of MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched genes related to VDZ responsiveness, highlighting important roles for these subsets in UC.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Integrinas/genética , Multiômica , Proteômica , Fármacos Gastrointestinais/uso terapêutico , Resultado do Tratamento , Estudos Retrospectivos
5.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405760

RESUMO

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-γ, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.

6.
Nat Commun ; 15(1): 216, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172101

RESUMO

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.


Assuntos
Líquidos Corporais , COVID-19 , Feminino , Humanos , SARS-CoV-2 , COVID-19/complicações , Linfócitos B , Progressão da Doença , Fenótipo
7.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36711576

RESUMO

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined. To identify the inflammatory cells that contribute to colitis and are affected by VDZ, we performed single-cell transcriptomic and proteomic analyses of peripheral blood and colonic biopsies in healthy controls and patients with UC on VDZ or other therapies. Here we show that VDZ treatment is associated with alterations in circulating and tissue mononuclear phagocyte (MNP) subsets, along with modest shifts in lymphocytes. Spatial multi-omics of formalin-fixed biopsies demonstrates trends towards increased abundance and proximity of MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched genes related to VDZ responsiveness, highlighting important roles for these subsets in UC.

8.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986828

RESUMO

Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.

9.
Res Sq ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577607

RESUMO

Dexamethasone is the standard of care for critically ill patients with COVID-19, but the mechanisms by which it decreases mortality and its immunological effects in this setting are not understood. We performed bulk and single-cell RNA sequencing of the lower respiratory tract and blood, and plasma cytokine profiling to study the effect of dexamethasone on systemic and pulmonary immune cells. We find decreased signatures of antigen presentation, T cell recruitment, and viral injury in patients treated with dexamethasone. We identify compartment- and cell- specific differences in the effect of dexamethasone in patients with severe COVID-19 that are reproducible in publicly available datasets. Our results highlight the importance of studying compartmentalized inflammation in critically ill patients.

10.
Cell Rep Med ; 4(6): 101079, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37327781

RESUMO

The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudos Longitudinais , Multiômica , Progressão da Doença
11.
PLoS One ; 18(2): e0281371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36787323

RESUMO

OBJECTIVE: There are currently no specific biomarkers to identify patients with abdominal aortic aneurysms (AAAs). Circulating exosomes contain microRNAs (miRNA) that are potential biomarkers for the presence of disease. This study aimed to characterize the exosomal miRNA expression profile of patients with AAAs in order to identify novel biomarkers of disease. METHODS: Patients undergoing duplex ultrasound (US) or computed tomography (CT) for screening or surveillance of an AAA were screened to participate in the study. Cases with AAA were defined as having a max aortic diameter >3 cm. Circulating plasma exosomes were isolated using Cushioned-Density Gradient Ultracentrifugation and total RNA was extracted. Next Generation Sequencing was performed on the Illumina HiSeq4000 SE50. Differential miRNA expression analysis was performed using DESeq2 software with a Benjamini-Hochberg correction. MicroRNA expression profiles were validated by Quantitative Real-Time PCR. RESULTS: A total of 109 patients were screened to participate in the study. Eleven patients with AAA and 15 non-aneurysmal controls met study criteria and were enrolled. Ultrasound measured aortic diameter was significantly larger in the AAA group (mean maximum diameter 4.3 vs 2.0 cm, P = 6.45x10-6). More AAA patients had coronary artery disease (5/11 vs 1/15, P = 0.05) as compared to controls, but the groups did not differ significantly in the rates of peripheral arterial disease and chronic obstructive pulmonary disease. A total of 40 miRNAs were differentially expressed (P<0.05). Of these, 18 miRNAs were downregulated and 22 were upregulated in the AAA group compared to controls. After false discovery rate (FDR) adjustment, only miR-122-5p was expressed at significantly different levels in the AAA group compared to controls (fold change = 5.03 controls vs AAA; raw P = 1.8x10-5; FDR P = 0.02). CONCLUSION: Plasma exosomes from AAA patients have significantly reduced levels of miRNA-122-5p compared to controls. This is a novel exosome-associated miRNA that warrants further investigation to determine its use as a diagnostic biomarker and potential implications in AAA pathogenesis.


Assuntos
Aneurisma da Aorta Abdominal , Exossomos , MicroRNAs , Humanos , Exossomos/metabolismo , MicroRNAs/metabolismo , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Biomarcadores , Reação em Cadeia da Polimerase em Tempo Real
12.
Cell Genom ; 3(1): 100229, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36777184

RESUMO

Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.

13.
Res Sq ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38196658

RESUMO

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant (SOT) recipients, who have atypical but poorly characterized immune responses to SARS-CoV-2 infection. We sought to understand and the host immunologic and microbial features of COVID-19 in SOT recipients by leveraging a prospective multicenter cohort of 1164 hospitalized patients. Using multi-omic immuoprofiling, we studied 86 SOT recipients in this cohort, who were age- and sex-matched 2:1 with 172 non-SOT controls. PBMC and nasal transcriptional profiling unexpectedly demonstrated upregulation of innate immune pathways related to interferon (IFN) and Toll-like receptor signaling, and complement activation, in SOT recipients. Longitudinal analyses across the first 30-days post-hospitalization demonstrated persistent upregulation of these innate immunity pathways in SOT recipients. The levels of several proinflammatory serum chemokines, such as CX3CL1 and KITLG, were also higher in SOT recipients at the time of hospitalization, although IFN-gamma levels were lower. We observed differential dynamics of CXCL11, which remained persistently elevated in SOT recipients over the course of hospitalization. Nasal microbiome alpha diversity was higher in SOT recipients versus controls, but no differences in taxonomic abundance beyond SARS-CoV-2 were observed. SOT recipients had higher nasal SARS-CoV-2 viral loads and impaired viral clearance compared to controls. Antibody analysis demonstrated lower anti-SARS-CoV-2 spike IgG levels in SOT recipients upon hospitalization, but no distinctions over time compared to controls. Mass cytometry demonstrated marked differences in blood immune cell populations, with SOT recipients exhibiting decreased plasmablasts and transitional B cells, and increased senescent T cells. Severe disease in SOT recipients was characterized by a less robust induction of inflammatory chemokines, such as IL-6 and CCL7, and a more subtle proinflammatory transcriptional response in the blood and airway. Together, our study reveals distinct immune features and altered viral dynamics in SOT recipients compared to non-SOT controls. We unexpectedly find that SOT recipients exhibit an augmented, predominantly innate immune response in both the blood and upper respiratory tract that remains relatively stable across disease severity, in contrast to non-SOT controls. These findings may relate to the paradoxical observation that SOT recipients have similar COVID-19 mortality rates versus the general population, despite being more susceptible to SARS-CoV-2 infection, remaining infectious longer, and having higher rates of hospitalization. In summary, we find that COVID-19 in SOT recipients is characterized by a biologically distinct immune state, suggesting the potential for unique prognostic biomarkers and therapeutic approaches in this vulnerable population.

14.
Dev Cell ; 57(13): 1566-1581.e7, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35714603

RESUMO

Alveolar formation increases the surface area for gas exchange. A molecular understanding of alveologenesis remains incomplete. Here, we show that the autonomic nerve and alveolar myofibroblast form a functional unit in mice. Myofibroblasts secrete neurotrophins to promote neurite extension/survival, whereas neurotransmitters released from autonomic terminals are necessary for myofibroblast proliferation and migration, a key step in alveologenesis. This establishes a functional link between autonomic innervation and alveolar formation. We also discover that planar cell polarity (PCP) signaling employs a Wnt-Fz/Ror-Vangl cascade to regulate the cytoskeleton and neurotransmitter trafficking/release from the terminals of autonomic nerves. This represents a new aspect of PCP signaling in conferring cellular properties. Together, these studies offer molecular insight into how autonomic activity controls alveolar formation. Our work also illustrates the fundamental principle of how two tissues (e.g., nerves and lungs) interact to build alveoli at the organismal level.


Assuntos
Miofibroblastos , Alvéolos Pulmonares , Animais , Vias Autônomas , Pulmão , Mamíferos , Camundongos , Organogênese
15.
Sci Immunol ; 7(69): eabj1080, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245089

RESUMO

Inflammation and dysfunction of the extrahepatic biliary tree are common causes of human pathology, including gallstones and cholangiocarcinoma. Despite this, we know little about the local regulation of biliary inflammation. Tuft cells, rare sensory epithelial cells, are particularly prevalent in the mucosa of the gallbladder and extrahepatic bile ducts. Here, we show that biliary tuft cells express a core genetic tuft cell program in addition to a tissue-specific gene signature and, in contrast to small intestinal tuft cells, decreased postnatally, coincident with maturation of bile acid production. Manipulation of enterohepatic bile acid recirculation revealed that tuft cell abundance is negatively regulated by bile acids, including in a model of obstructive cholestasis in which inflammatory infiltration of the biliary tree correlated with loss of tuft cells. Unexpectedly, tuft cell-deficient mice spontaneously displayed an increased gallbladder epithelial inflammatory gene signature accompanied by neutrophil infiltration that was modulated by the microbiome. We propose that biliary tuft cells function as bile acid-sensitive negative regulators of inflammation in biliary tissues and serve to limit inflammation under homeostatic conditions.


Assuntos
Ácidos e Sais Biliares , Sistema Biliar , Animais , Células Epiteliais/fisiologia , Inflamação , Camundongos , Neutrófilos
16.
Am J Respir Cell Mol Biol ; 66(4): 391-401, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982656

RESUMO

Asthma is associated with chronic changes in the airway epithelium, a key target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many epithelial changes, including goblet cell metaplasia, are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. We found that IL-13 stimulation of differentiated human bronchial epithelial cells (HBECs) cultured at air-liquid interface reduced viral RNA recovered from SARS-CoV-2-infected cells and decreased double-stranded RNA, a marker of viral replication, to below the limit of detection in our assay. An intact mucus gel reduced SARS-CoV-2 infection of unstimulated cells, but neither a mucus gel nor SPDEF, which is required for goblet cell metaplasia, were required for the antiviral effects of IL-13. Bulk RNA sequencing revealed that IL-13 regulated 41 of 332 (12%) mRNAs encoding SARS-CoV-2-associated proteins that were detected in HBECs (>1.5-fold change; false discovery rate < 0.05). Although both IL-13 and IFN-α each inhibit SARS-CoV-2 infection, their transcriptional effects differed markedly. Single-cell RNA sequencing revealed cell type-specific differences in SARS-CoV-2-associated gene expression and IL-13 responses. Many IL-13-induced gene expression changes were seen in airway epithelium from individuals with type 2 asthma and chronic obstructive pulmonary disease. IL-13 effects on airway epithelial cells may protect individuals with type 2 asthma from COVID-19 and could lead to identification of novel strategies for reducing SARS-CoV-2 infection.


Assuntos
Asma , COVID-19 , Células Cultivadas , Células Epiteliais , Epitélio , Humanos , Interleucina-13/farmacologia , SARS-CoV-2
17.
Nat Commun ; 12(1): 6309, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728633

RESUMO

Lung fibrosis is increasingly detected with aging and has been associated with poor outcomes in acute lung injury or infection. However, the molecular programs driving this pro-fibrotic evolution are unclear. Here we profile distal lung samples from healthy human donors across the lifespan. Gene expression profiling by bulk RNAseq reveals both increasing cellular senescence and pro-fibrotic pathway activation with age. Quantitation of telomere length shows progressive shortening with age, which is associated with DNA damage foci and cellular senescence. Cell type deconvolution analysis of the RNAseq data indicates a progressive loss of lung epithelial cells and an increasing proportion of fibroblasts with age. Consistent with this pro-fibrotic profile, second harmonic imaging of aged lungs demonstrates increased density of interstitial collagen as well as decreased alveolar expansion and surfactant secretion. In this work, we reveal the transcriptional and structural features of fibrosis and associated functional impairment in normal lung aging.


Assuntos
Colágeno/metabolismo , Regulação da Expressão Gênica , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Encurtamento do Telômero , Adolescente , Adulto , Fatores Etários , Idoso , Senescência Celular/fisiologia , Estudos de Coortes , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
18.
J Med Chem ; 64(19): 14809-14821, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34606726

RESUMO

The protein homeostasis (proteostasis) network is composed of multiple pathways that work together to balance protein folding, stability, and turnover. Cancer cells are particularly reliant on this network; however, it is hypothesized that inhibition of one node might lead to compensation. To better understand these connections, we dosed 22Rv1 prostate cancer cells with inhibitors of four proteostasis targets (Hsp70, Hsp90, proteasome, and p97), either alone or in binary combinations, and measured the effects on cell growth. The results reveal a series of additive, synergistic, and antagonistic relationships, including strong synergy between inhibitors of p97 and the proteasome and striking antagonism between inhibitors of Hsp90 and the proteasome. Based on RNA-seq, these relationships are associated, in part, with activation of stress pathways. Together, these results suggest that cocktails of proteostasis inhibitors might be a powerful way of treating some cancers, although antagonism that blunts the efficacy of both molecules is also possible.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Próstata/patologia , Proteostase/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Androgênicos/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
19.
Cell Rep ; 36(12): 109727, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551293

RESUMO

In traumatic brain injury (TBI), a diversity of brain resident and peripherally derived myeloid cells have the potential to worsen damage and/or to assist in healing. We define the heterogeneity of microglia and macrophage phenotypes during TBI in wild-type (WT) mice and Ccr2-/- mice, which lack macrophage influx following TBI and are resistant to brain damage. We use unbiased single-cell RNA sequencing methods to uncover 25 microglia, monocyte/macrophage, and dendritic cell subsets in acute TBI and normal brains. We find alterations in transcriptional profiles of microglia subsets in Ccr2-/- TBI mice compared to WT TBI mice indicating that infiltrating monocytes/macrophages influence microglia activation to promote a type I IFN response. Preclinical pharmacological blockade of hCCR2 after injury reduces expression of IFN-responsive gene, Irf7, and improves outcomes. These data extend our understanding of myeloid cell diversity and crosstalk in brain trauma and identify therapeutic targets in myeloid subsets.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Microglia/metabolismo , Receptores CCR2/genética , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Monócitos/citologia , Monócitos/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/deficiência , Receptores CCR2/metabolismo
20.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33974042

RESUMO

T cell anergy is an important peripheral tolerance mechanism. We studied how T cell anergy is established using an anergy model in which the Zap70 hypermorphic mutant W131A is coexpressed with the OTII TCR transgene (W131AOTII). Anergy was established in the periphery, not in the thymus. Contrary to enriched tolerance gene signatures and impaired TCR signaling in mature peripheral CD4 T cells, CD4SP thymocytes exhibited normal TCR signaling in W131AOTII mice. Importantly, the maintenance of T cell anergy in W131AOTII mice required antigen presentation via MHC-II. We investigated the functional importance of the inhibitory receptor PD-1 and the E3 ubiquitin ligases Cbl-b and Grail in this model. Deletion of each did not affect expression of phenotypic markers of anergic T cells or T reg numbers. However, deletion of Cbl-b, but not Grail or PD-1, in W131AOTII mice restored T cell responsiveness and signaling. Thus, Cbl-b plays an essential role in the establishment and/or maintenance of unresponsiveness in T cell anergy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteínas Proto-Oncogênicas c-cbl/imunologia , Linfócitos T Reguladores/imunologia , Animais , Anergia Clonal/imunologia , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Tolerância Periférica/imunologia , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/imunologia , Ubiquitina-Proteína Ligases/imunologia , Proteína-Tirosina Quinase ZAP-70/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...